1.1. which approximately 20 are known to transmit

1.1. Back ground of the study

 

Malaria is a
vector-borne disease caused by protozoan parasites belonging to the genus
Plasmodium and transmitted by the bite of infected female Anopheles species mosquitoes;
about 60 species of the genus Anopheles can transmit malaria (Walker K,
2002, Cox FE.2010). Until recently, five species of Plasmodium, namely: P.
vivax, P. falciparum, P. ovale (two sub species: P. ovale curtisi and P.
ovale wallikeri), P. malariae and P. knowlesi are known to cause
human disease (Cox-Singh J, 2010; Yusof R;,et al., 2014). The conditions of the
parasite, vector and the human host are characterized by different factors,
which are highlighted here.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now

 

It is caused by
Plasmodium parasites, is a blood-borne disease which is transmitted through the
bite of an infected female Anopheles mosquito. It is a major public health
issue which affects the global population at large (Kumi-Boateng et al.,
2015; Ahmed, 2014). Malaria is typically found in warmer regions of the world, i.e.,
the tropical and subtropical countries. Vectors (female Anopheles mosquitoes)
require specific habitats with surface water for production, humidity
for adult mosquito survival and the development rate of both vector and
parasite are dependent on temperature (Ahmed, 2014; Ashenafi, 2013).

 

 Malaria is essentially an environmental
disease since the vectors require specific habitats with surface water for
reproduction, humidity for adult mosquito survival and the development rates . The
increase in malaria prevalence is determined by several factors: mosquito
resistance to insecticides, parasite resistance to drugs, changes in land-use
patterns, and reductions in funding and manpower dedicated to control
activities. Most of the determinants are heterogeneously distributed, changing
over both space and time. Factors such as topography, temperature, rainfall,
land use, population movements, and degree of deforestation have a profound
influence on the temporal and spatial distribution of malaria vectors and
malaria. (FMoH, 2009).

 Globally, about half of the
world populations (3.3 billion) are at risk of malaria infection (World
Health Organization WHO 2011).Adult female
mosquitoes of the genus Anopheles are vectors for the Plasmodium parasites and
are thus responsible for malaria transmission.

 

There are 490 species in the genus Anopheles, and 70 of these are
vectors of malaria. In sub-Saharan Africa, there are 140 Anopheles species of
which approximately 20 are known to transmit malaria parasites to human beings.
Of these, Anopheles gambiae s.s, Anopheles arabiensis Patton, and Anopheles
funestus Giles are the most widely distributed and important malaria vector
species in tropical Africa (Gillies and Coetzee 1987, Foley et al. 2010).

 

 According to Kaya et al. (2002), malaria
remains one of the greatest killers of human beings, particularly in the
developing countries. The World Health Organization (WHO,2012), estimated over
one million malaria cases each year, where more than 80% of the cases are in
Sub-Saharan Africa countries.

Malaria
is one of the main health problems in Ethiopia in which its cases are one of
the highest and it is increasing in an alarming rate. Ethiopians live at
altitudes ranging from ?100 to >4220 m, the topography made a fertile ground
for the reproduction of the epidemic. More than 50 million (68%) of the
population live in areas below 2000 m above sea level are at risk of malaria.
With consequent variation in minimum and maximum temperatures. In general, the
main reasons given for the increment are ecological and climatic changes. The
peak of Malaria incidence follows the main rainfall season in July, August,
September, October and November each year. (Negassi F., 2008).

Currently
Remote Sensing techniques provide valuable information on such environmental
conditions. Several studies have used Remote Sensing imagery and Geographical
Information System (GIS) techniques to map the distribution of vector species
at different spatial scales such as the entire world, continent, national,
regional, even at small village level. According to Tran et al (2008),
in endemic areas, mainly in tropical and subtropical regions, these vector maps
are designed to improve vector control, which is currently one of the essential
methods in limiting the burden of important vector-borne diseases such as
malaria or dengue fever. In disease free areas, analyzing the link between the
environment and potential vector distribution may help evaluate the risk of
emergence of the disease, and lead to better mitigation and control measure of
the invasive vector species. In particular, the evolution of geographic
information systems (GIS), the global positioning system (GPS), and remote
sensing (RS) technologies has enabled the collection and analysis of field data
in ways that were not possible before the advent of the computer(Milla et al.,
2005).

GIS
has several applications to the study of mosquito biology and ecology (Eskinder
etal., 2010), suggesting that GIS is the best or available method to answer
questions regarding mosquito ecologyas well studies of risk as a function of
distance from known breeding sites and others are one common application of
GIS. GIS in combination with remote-sensing (RS) technology, has also been
employed to predict areas of high productivity of mosquitoes and potential
malaria epidemics based on the detection of proxy ecological variables (Hay et
al., 2000). Therefore, the aim of this study will be to assess the spatio
temporal variation of malaria in the study area

 1.2. Statement of the of the
problem

Globally, about half of the world populations (3.3 billion) are at
risk of malaria infection (World Health Organization WHO
2011). It has widely known impacts on the
economic, social, and political sphere of the society As a result wide range of
measures were taken by national and international organizations to reduce the
impact of the epidemic but most of the efforts were invested on managing the
results than prevention. Therefore, the cost of preventive plan and medical
treatment becomes affect the GDP and as well as the individual economy due to
this infections.

An
estimated numbers of billion peoples are at risk of this infections and 3000 to
5000 million suffering a short period with the disease each year perhaps 90
percent of these occur in tropic of Africa (WHO, 2012) Malaria kills between
1.1 and 2.7 Million people per year. Of these deaths, approximately one million
are children in the tropic of Africa between the ages of 18 months and 5 years
(Webb, 2009).

 Malaria risk becomes higher
developing countries (Donnelly, 2005). According to Stratton, (2008) mentioned
the multiplicity of malaria causing factors in semi urban areas as the main
cause of its prevalence as they are difficult to control at the same time.

 

 Due to its tropical location and availability
of many rivers and lakes, Ethiopia is suitable for breeding of plasmodium (Womie,
2008). As aresult it is a major public health problem in Ethiopia (FMoH, 2009).
Accordingly its occurrence in most parts of the country is unstable mainly due
to the country’s topographical and climatic features.

 

 

 

 

In
order to reduce this impact of the epidemic disease, wide range of measures
were taken by national and international organizations. Preventive measures are
cost and time effective.

One
of the Maine issues to be considered as preventive is to work on the main
factors contributing for the development and expansion of the problem. In this
case Geographic Information System and Remote Sensing (GIS AND RS) application can
best fit to analyze the root problem both spatially and temporal variation. For
this reason, understanding malaria epidemics using GIS and Remote Sensing data
believed to be essential by the researcher.

 

As
a result, in the study area, the spatial variation of malaria risk level based
on environmental factors is not identified, which could facilitate the malaria
prevention and control activities. To feel this gap, the researcher will try
applying the application GIS, RS and MCDE based analysis to identify,
classifying, and mapping areas vulnerable to malaria epidemic.

1.3.
Objective of the Study

The
study will be carried out to achieve the following objectives.

1.3.1. General objective

This
study aims to optimize the use of GIS and Remote Sensing (RS) technologies in
malaria control programme by examining the spatial distribution of vectors in
malaria endemic areas and determining the correlation between environmental
variables and the distribution of larval in the breeding habitats.

1.3.2. Specific objective

ü  To
investigate the trends of malaria in the study area.

ü 
To identify and integrates environmental
(topographic) factors which make condition suitable for facilitating mosquito
breeding conditions.

ü 
To analyze the spatial distribution of malaria
epidemic in the study area

ü 
To develop malaria risk map of the study area

ü 
To compare malaria risk level of the  selected weredas in the study area

 

1.4. Research questions

Considering
the above listed research objectives, the following research questions will be
used as the fundamental basis for this study:

1,What
is the temporal change of malaria infestation in the study area?

2,
What are environmental factor which provides mosquito breeding conditions.

3, How
the malaria infestation is distributed over the space of the study area?

4,
Which parts of the the selected weredas have high, moderate and low malaria
risk levels?

1.5.
Significant Of the Study

The
result of this study could give important information on the spatio-temporal
distribution of malaria case in the study area. The study will have also  the ability of identifying risk areas using
GIS and remote sensing technique that greatly enhance the effectiveness of
prevention efforts and will contribute to cost-effective prevention method by
providing mechanism of efficiently targeting high risk areas, which help
national and international organizations, medical geographers and any stake
holders working in the health and the selectedweredas of  health sectors in organizing their efforts
towards the fight against malaria efficiently and cost effectively.

1.6. Scope
of the Study

The
scope of this study is delimited both in geographical area and issue of
concern. Geographically, it is delimited to the two selected woredas of Jimma
zone which is Limmu seka and choraboter of Oromia national regional state.
Regarding the area of concern, the main focus of the research will developing the
spatioal variation of malaria risk map for the Woredas. Thus, this study is
restricted to develop GIS and remote sensing based malaria risk map of the
study area using environmental factors.

1.7.
Organization of the paper

The study will have five chapters the first chapter contains
introduction, statement of the problem, objectives, and research question: in
the second part theoretical literature will reviewed and the third chapter
contains methodology and description of the study area. The fourth chapter
deals with result and discussion, in the last chapter conclusion and
recommendation will be forwarded.

x

Hi!
I'm Simon!

Would you like to get a custom essay? How about receiving a customized one?

Check it out